Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

نویسندگان

  • Yisheng Rong
  • Jian Sun
  • Weiqiang Liu
  • Renjun Zhan
چکیده

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating. Keywords—opposing jet, aerodynamic heating, total pressure ratio, thermal protection system

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Cavity Length on Forward-facing Cavity and Opposing Jet Combined Thermal Protection System Cooling Efficiency

A numerical study on the influence of forward-facing cavity length upon forward-facing cavity and opposing jet combined thermal protection system (TPS) cooling efficiency under hypersonic flow is conducted, by means of which the flow field parameters, heat flux distribution along the outer body surface are obtained. The numerical simulation results are validated by experiments and the cooling e...

متن کامل

Heat Transfer on a Hypersonic Sphere with Gas Injection

The interaction of a diffusing outgas flow from a sphere nose opposing a hypersonic free stream is studied numerically using the direct simulation Monte-Carlo technique under the transitional rarefied-gas-flow regime conditions at Knudsen numbers from 0.016 to 1.5 and blowing factors from 0.15 to 1.5. Strong influences of the blowing factor (the ratio of outgas mass flux to upstream mass flux) ...

متن کامل

Heat Transfer on a Hypersonic Sphere with Diffuse Rarefied-gas Injection

The interaction of a diffusing outgas flow from a sphere nose opposing a hypersonic free stream is studied numerically by the direct simulation MonteCarlo technique under the transitional rarefied-gas-flow regime conditions at Knudsen numbers from 0.016 to 1.5 and blowing factors from 0.15 to 1.5. Strong influences of the blowing factor (the ratio of outgas mass flux to upstream mass flux) and ...

متن کامل

Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows

A numerical study employing discontinuous Galerkin method demonstrating net surface heat reduction for a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators to inject momentum near the stagnation point. A 5 species finite rate air chemistry model completes the picture by analyzing the effect of the ...

متن کامل

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012